stop smoke engine oil

Internal combustion engine

"ICEV" redirects here.
For the form of water ice, see Ice V.

For the high speed train, see ICE V. Diagram of a cylinder as found in 4-stroke gasoline engines.: C ? crankshaft. E ? exhaust camshaft. I ? inlet camshaft. P ? piston. R ? connecting rod. S ? spark plug. V ? valves.

red: exhaust, blue: intake. W ? cooling water jacket. gray structure ? engine block. Diagram describing the ideal combustion cycle by Carnot An internal combustion engine (ICE) is a heat engine where the combustion of a fuel occurs with an oxidizer (usually air) in a combustion chamber that is an integral part of the working fluid flow circuit.

In an internal combustion engine the expansion of the high-temperature and high-pressure gases produced by combustion apply direct force to some component of the engine.

The force is applied typically to pistons, turbine blades, rotor or a nozzle.
This force moves the component over a distance, transforming chemical energy into useful mechanical energy. The first commercially successful internal combustion engine was created by Étienne Lenoir around 18591 and the first modern internal combustion engine was created in 1876 by Nikolaus Otto (see Otto engine). The term internal combustion engine usually refers to an engine in which combustion is intermittent, such as the more familiar four-stroke and two-stroke piston engines, along with variants, such as the six-stroke piston engine and the Wankel rotary engine. A second class of internal combustion engines use continuous combustion: gas turbines, jet engines and most rocket engines, each of which are internal combustion engines on the same principle as previously described.12 Firearms are also a form of internal combustion engine.2 Internal combustion engines are quite different from external combustion engines, such as steam or Stirling engines, in which the energy is delivered to a working fluid not consisting of, mixed with, or contaminated by combustion products. Working fluids can be air, hot water, pressurized water or even liquid sodium, heated in a boiler.

ICEs are usually powered by energy-dense fuels such as gasoline or diesel, liquids derived from fossil fuels.

While there are many stationary applications, most ICEs are used in mobile applications and are the dominant power supply for vehicles such as cars, aircraft, and boats. Typically an ICE is fed with fossil fuels like natural gas or petroleum products such as gasoline, diesel fuel or fuel oil.

There's a growing usage of renewable fuels like biodiesel for compression ignition engines and bioethanol or methanol for spark ignition engines.

Hydrogen is sometimes used, and can be made from either fossil fuels or renewable energy.Źródło:

How to make the driver's life was simpler?

stop smoke engine oilDue to the fact that more and more cars are equipped with modern systems supporting the work of the driver no longer unusual today in the presence of car parking sensor or navigation built into the car.
People with older models can on their own to invest in this type of solution too little money.
Why? First of all, using such useful gadgets we can not only shorten their time maneuvering or find your way to your destination, but also no worries plan everything well in advance. The presence of a variety of sensors in turn influences that we can feel more confident behind the wheel, even in unfamiliar terrain.

History of electric motor

Perhaps the first electric motors were simple electrostatic devices created by the Scottish monk Andrew Gordon in the 1740s.2 The theoretical principle behind production of mechanical force by the interactions of an electric current and a magnetic field, Amp?re's force law, was discovered later by André-Marie Amp?re in 1820.

The conversion of electrical energy into mechanical energy by electromagnetic means was demonstrated by the British scientist Michael Faraday in 1821.

A free-hanging wire was dipped into a pool of mercury, on which a permanent magnet (PM) was placed.
When a current was passed through the wire, the wire rotated around the magnet, showing that the current gave rise to a close circular magnetic field around the wire.3 This motor is often demonstrated in physics experiments, brine substituting for toxic mercury. Though Barlow's wheel was an early refinement to this Faraday demonstration, these and similar homopolar motors were to remain unsuited to practical application until late in the century. Jedlik's "electromagnetic self-rotor", 1827 (Museum of Applied Arts, Budapest).
The historic motor still works perfectly today.4 In 1827, Hungarian physicist Ányos Jedlik started experimenting with electromagnetic coils.
After Jedlik solved the technical problems of the continuous rotation with the invention of the commutator, he called his early devices "electromagnetic self-rotors". Although they were used only for instructional purposes, in 1828 Jedlik demonstrated the first device to contain the three main components of practical DC motors: the stator, rotor and commutator. The device employed no permanent magnets, as the magnetic fields of both the stationary and revolving components were produced solely by the currents flowing through their windingsŹródło:

Widok do druku:

stop smoke engine oil

Poprzednie wpisy:

Następne wpisy: